Characterization of Isospectral Graphs Using Graph Invariants and Derived Orthogonal Parameters
نویسندگان
چکیده
Numerical graph theoretic invariants or topological indices (TIs) and principal components (PCs) derived from TIs have been used in discriminating a set of isospectral graphs. Results show that lower order connectivity and information theoretic TIs suffer from a high degree of redundancy, whereas higher order indices can characterize the graphs reasonably well. On the other hand, PCs derived from the TIs had no redundancy for the set of isospectral graphs studied.
منابع مشابه
Applications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملSplice Graphs and their Vertex-Degree-Based Invariants
Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.
متن کاملProduct version of reciprocal degree distance of composite graphs
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
متن کاملNeighbourly Irregular Derived Graphs
A connected graph G is said to be neighbourly irregular graph if no two adjacent vertices of G have same degree. In this paper we obtain neighbourly irregular derived graphs such as semitotal-point graph, k^{tℎ} semitotal-point graph, semitotal-line graph, paraline graph, quasi-total graph and quasivertex-total graph and also neighbourly irregular of some graph products.
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Chemical Information and Computer Sciences
دوره 38 شماره
صفحات -
تاریخ انتشار 1998